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Abstract

This report concerns the construction of scaling models for large-scale assessments in education. A

scaling model, which makes use of information from both responses to cognitive assessment and back-

ground survey items, produces plausible values for individual students. There are two major challenges

when building a scaling model – (1) a large number of background variables and (2) many missing values

in the background survey data. Traditionally, these challenges are tackled by a latent regression model,

in which the missing values are handled by a missing indicator approach, and the high dimensionality

of the background variables and their missing indicators is reduced by Principal Component Analysis

(PCA). However, this approach has three drawbacks: (1) the missing indicator approach does not per-

form well under certain data missingness patterns, (2) PCA may introduce spurious dependence between

the achievement traits and background variables, and (3) the resulting model lacks interpretability due

to the involvement of hard-to-interpret principal component scores. To overcome these drawbacks, we

propose a variable selection approach to latent regression modelling. The proposed approach handles

missing data by iterative imputation and controls variable selection error by a data-splitting procedure.

Simulation studies are conducted to evaluate the performance of the proposed method and also compare

the proposed method with the traditional one. Finally, the proposed method is applied to the Progress

in International Reading Literacy Study (PIRLS) 2016 data, from which sensible results are obtained

while limitations are also identified.

Keywords: Latent regression, large-scale assessment, variable selection, missing data, imputation, PIRLS

1 Introduction

Scaling plays a key role in large-scale assessments in education. Making use of information from students’

responses to cognitive assessment and background survey items, a scaling procedure produces plausible values

for student achievement (von Davier, 2013). Most scaling procedures in large-scale assessments rely on a

latent regression model (Mislevy, 1984, 1991), a latent variable model combining an Item Response Theory

(IRT) measurement model and a linear regression structural model. Thanks to the IRT measurement model,

the latent regression model naturally handles the matrix sampling design in large-scale assessments in which

different students receive different but overlapping sets of cognitive items (Mislevy et al., 1992). This design

is favoured as it enables a cognitive assessment to cover an extensive content domain while avoiding giving

1



each student too many items. In addition, the linear regression structural model borrows information from

non-cognitive background variables to compensate for the potential shortage of cognitive information.

Due to the complexity of large-scale assessment data, there are two challenges when building such a latent

regression model. First, surveys typically collect a large number of background variables: without dimension

reduction techniques, a latent regression analysis including all these variables likely suffers from the curse of

dimensionality – the estimation and prediction will become inaccurate when the model involves too many

parameters. Second, there are often many missing values in the background variables (some variables may

have up to 30% to 40% missing). A sensible treatment of missing data is non-trivial. A PCA-based approach

(Martin et al., 2016, 2017; OECD, 2017, 2019) is the state-of-the-art approach in large-scale assessments for

building scaling models. In this approach, missing values are treated using a missing indicator approach

(Cohen and Cohen, 1975). This approach treats a missing value as an “extra category” and creates an

additional indicator (i.e. dummy) variable to code it. With the dummy-coded predictor matrix, PCA is

applied to reduce the dimensionality of data, from which the principal component scores of the top principal

components are retained. Finally, a latent regression model is built based on the cognitive assessment data

and the retained principal component scores.

Although the PCA-based approach provides a mechanism to handle both the high dimensionality of

the predictors and the missing values, it has several drawbacks. First, the missing indicator approach

lacks theoretical guarantees even when data are missing at random and, thus, has been discouraged in the

statistical literature (e.g., Jones, 1996; Schafer and Graham, 2002). As shown in a simulation study in

Section 5, the missing indicator approach, when combined with PCA, can perform very poorly if a large

block of the background data matrix is missing – a situation likely to happen in large-scale assessments (e.g.,

when many parents fail to return the home survey questionnaire). Second, the PCA-based approach does not

directly characterise the relationship between students’ achievement traits and the background variables. To

study the relationship, applied researchers need to run further regression analyses using the plausible values

of achievement traits and the background variables. However, since the plausible values are produced using

the principal component scores, spurious dependence may be introduced in this process, leading to less valid

inference results in the secondary analyses. Fundamentally, this is due to the inconsistency between the data

imputation model (i.e., the PCA-based latent regression model) and the analysis model researchers use (e.g.,

a linear regression). Finally, the final latent regression model lacks interpretability due to the involvement

of hard-to-interpret principal component scores. That is, it is hard to tell how each background variable

contributes to the prediction of achievement traits. Consequently, it becomes difficult to communicate to

the public about the scaling model.

This report proposes a new method for constructing a scaling model. The new method addresses the

issues in the state-of-the-art PCA-based approach. Our approach relies on several technical tools. First, to

handle the missing values, we introduce a joint model for the predictors, which is based on an exponential

family graphical model (Chen et al., 2015; Tsao, 1967; Yang et al., 2015) – also known as a Second-Order

Exponential (SOE) model in the case of multivariate binary data. Under this exponential family graphical

model, we introduce an Iterative Imputation (II) algorithm that simultaneously (1) imputes the missing

values and the latent variables and (2) samples the unknown parameters of the latent regression model and

the exponential family graphical model under a Bayesian framework. Second, we propose a variable selection

procedure to reduce the dimensionality of the background variables and enhance the interpretability of the

scaling model. To solve the multiple comparison problems with variable selection, we propose to control the

False Discovery Rate (FDR). We apply a recently proposed Data Splitting (DS) method (Dai et al., 2022)
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to control FDR. Combining the exponential family graphical model for predictors, the II algorithm and the

DS approach, we propose a variable selection method for latent regression models.

We note that the proposed estimation method based on iterative imputation is closely related to a fully

conditional specification (FCS) approach proposed in Grund et al. (2021), which allows for joint treatment

of plausible values and missing data. However, Grund et al. (2021) did not tackle the high-dimensionality of

background variables. We also note that Yamaguchi and Zhang (2023) proposed a Bayesian variable selection

method for latent regression and applied it to the 2018 Programme for International Student Assessment

(PISA) data. However, their method does not handle missing data, and thus, they performed listwise deletion

when analysing PISA data.

The rest of the report is organised as follows. In Section 2, we describe the problem setting and the

proposed model. In Section 3, we introduce an iterative imputation algorithm and an associated estimation

method. In Section 4, we introduce a data-splitting for controlling the FDR of variable selection. Simulation

studies are conducted in Section 5, and an application to data from PIRLS 2016 is given in Section 6. We

conclude with discussions in Section 7.

2 Problem Setup

Consider data collected from N students, where the data are independent across students. For each student

i, the data can be divided into two parts – (1) responses to cognitive items and (2) non-cognitive predictors.

We use a random vector Yi to denote student i’s cognitive responses. Due to the matrix sampling design

for cognitive items in ILSAs, the items different students receive can be different. More precisely, we use

Bi to denote the set of cognitive items that student i is assigned. Then Yi “ tYij : j P Biu. Depending

on how each item is scored, Yij may be a binary variable taking value in t0, 1u or an ordinal variable

taking value in t0, 1, ...,Kju, Kj ě 2. In addition, consider p predictors collected via non-cognitive survey

questionnaires. Let Zi “ pZi1, . . . , ZipqJ denote the complete predictor vector for student i. Often, there are

missing values in Zi. Let Ai denote the set of observed predictors for student i, and let Zobs
i “ tZij : j P Aiu

and Zmis
i “ tZij : j R Aiu. The predictors are of mixed types. In the current study, binary, categorical

(ordinal/nominal), and continuous predictors are considered. Note that an ordinal variable will be treated

as a nominal one here for simplicity. Further modelling can be done to incorporate the information in the

category order for ordinal variables, though we believe that the improvement will be very marginal in terms

of the prediction power of the resulting model.

2.1 Measurement Model

We introduce a latent variable θi as the latent construct, which is measured by the cognitive items. The

measurement model is an IRT model which specifies the conditional distribution of Yi given θi. More

specifically, this model assumes local independence, an assumption that is commonly adopted in IRT models

(Lord and Novick, 1968; Embretson and Reise, 2000). That is, Yij , j P Bi, are conditionally independent

given θi. For a dichotomously scored non-multiple-choice item j, the conditional distribution of Yij given

θi is assumed to follow a Bernoulli distribution with probability PpYij “ 1|θiq that follows a two-parameter

logistic model (2PL, Birnbaum, 1968). That is,

PpYij “ 1|θiq “
exppajθi ` bjq

1 ` exppajθi ` bjq
,
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where aj and bj are two item-specific parameters. For a dichotomously scored multiple-choice item j, the

conditional distribution of Yij given θi is assumed to follow a three-parameter logistic model (3PL, Birnbaum,

1968). That is,

PpYij “ 1|θiq “ cj ` p1 ´ cjq
exppajθi ` bjq

1 ` exppajθi ` bjq
,

where aj , bj and cj are item-specific parameters. For an ordinal item j, the generalised partial credit model

(Muraki, 1992) is assumed, for which

PpYij “ k|θiq “
exppajθi ` bjkq

1 `
řKj

l“1 exppajθi ` bjlq
, k ě 1,

and

PpYij “ 0|θiq “
1

1 `
řKj

l“1 exppajθi ` bjlq
,

where aj and bjl, l “ 1, ...,Kj are item-specific parameters.

In the analysis below, we assume that all the item parameters are known – they are fixed at pre-

calibrated values. This is not a constraint or limitation of the method. This is an assumption that follows

operational practice, where the IRT measurement model is estimated first, and then the latent regression is

estimated. This is the case for PIRLS, as well as the Trends in International Mathematics and Science Study

(TIMSS), PISA, the Programme for the International Assessment of Adult Competencies (PIAAC), the

National Assessment of Educational Progress (NAEP) and other studies using the general latent regression

and plausible values approach.

2.2 Structural Model

The structural model regresses the latent construct θi onto the complete-data predictors Zi1, ..., Zip. A

linear regression model is assumed for θi given Zi1, ..., Zip. More specifically, for each variable j, we

introduce a transformation gjpZjq. When Zj is an ordinal or categorical variable with categories t0, ...,Kju,

the transformation function gj creates Kj dummy variables, i.e., gjpZjq “ pIptZj “ 1uq, ..., IptZj “ KjuqqJ.

For continuous and binary variables, gj is an identity link, i.e., gjpZjq “ Zj . We assume θi|Zi „ Npβ0 `

βJ
1 g1pZi1q ` ¨ ¨ ¨ `βJ

p gppZipq, σ2q, where β0 is the intercept, β1, ..., βp are the regression coefficients, and σ2

is the residual variance. Note that βj is a scalar when predictor j is continuous or binary and is a vector

when the predictor is ordinal or categorical. Here, β0, β1, ..., βp, and σ are unknown and will be estimated

from the model. The main goal of our analysis is to find predictors of θ for which }βj} ‰ 0.

2.3 Predictor Model

To handle missing values in Zijs, we impose a joint model for the predictors. Although different models may

be imposed here, we assume an exponential family graphical model, under which missing data imputation and

parameter estimation can be carried out in a computationally efficient way (see Section 3 for more details).

More precisely, we let pθi,Ziq be (independent and identically distributed) i.i.d., following an exponential

family graphical model. This model includes the SOE model for multivariate binary data as a special. More

specifically, the joint distribution for X “ pθi, g1pZi1q, ..., gppZipqqJ satisfies

fpx|γ,Λq 9 exp
`

γJx ` xJΛx
˘

, (1)
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where the notation 9 means that the two sides of (1) differ by a constant that does not depend on x, and

Λ and γ denote unknown parameters of the model. More specifically, Λ is a symmetric matrix, and the sth

entry of γ is zero if xs is a dummy variable.

Under this model, the conditional distribution of θi given Zi is the linear regression model in the above

structural model. The conditional distribution of Zij given pθi, Zi,´jq takes the following forms:

• A linear regression model (with normal residual), if variable j is continuous;

• A logistic regression model, if variable j is binary;

• A multinomial logistic regression model if variable j is categorical.

These conditional distributions involve unknown parameters that depend on Λ and γ in the joint model.

These conditional distributions will be used later for missing data imputation and parameter estimation. We

remark that except for the parameters of the structural model, the rest of the parameters in the exponential

family graphical model can be viewed as nuisance parameters, as they are not of interest to us. The predictor

model and these nuisance parameters are introduced to handle the missing values in the predictors.

3 Estimation Procedure

In what follows, we introduce an Iterative Imputation (II) algorithm for estimating the parameters in the

structural model, i.e., β0, β1, ..., βp, and σ2. Recall that our setting assumes that the item parameters

in the measurement model are known, and thus, these parameters are not estimated. This approach also

estimates the parameters in the predictor model, though we do not explicitly list them as an output from

the II algorithm.

Algorithm 1 (II Algorithm).

Input: Total number of iterations T , burn-in size B ă T , an initial imputation of the latent variables

and the missing predictors, denoted by θ
p0q

i and Z
p0q,mis
i , respectively. Observed responses Yi and

observed predictors Zobs
i . We use Z

p0q

i to denote the complete predictor vector for student i, with the

missing entries replaced by Z
p0q,mis
i . The priors for parameters in each conditional model of Zj given

Z´j and θ, and those for the parameters in the linear regression model of Zj given Z´j and θ. Initial

values for the parameters in the logistic and multinomial logistic conditional models (to be used for

Gibbs sampling).

For iterations t “ 1, ..., T , we alternate between the following two steps in each iteration t.

1. Sampling (S) Step: For each of the variables j “ 1, ..., p, sample the parameters in the

conditional model of Zj given Z´j and θ. Exact or approximate samples are obtained from the

posterior distribution of the regression coefficient parameters given imputed data Z
pt´1q

i and latent

variables θ
pt´1q

i and the corresponding input prior distribution for these parameters. That is,

for each variable j, we sample the parameters of the corresponding Bayesian linear, logistic, or

multinomial logistic model (depending on the type of variable j). Finally, we sample the parameters

of the linear regression model of θ given Z based on the imputed data and the input priors for

these parameters. The sampled parameters from this model are denoted by pβ
ptq
0 ,βptq, pσptqq2q.
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2. Imputation (I) Step: Impute the missing values using the estimated conditional models from

the S-step of the same iteration. We first update missing values in the predictors using a random-

scan Gibbs-type procedure. That is, we first randomly generate the updating order j1, ..., jp. Then,

we update the missing values in predictors j1, ..., jp, one predictor at a time. When imputing

the missing values in variable jl, we plug in θ
pt´1q

i and the most recently imputed data for Zi,´jl

(i.e., the missing values in variables j1, ..., jl´1 are from this iteration, t, and the missing values

in variables jl`1, ..., jp are from the previous iteration, t ´ 1). After all the missing values in

predictors have been imputed, we denote the recently updated complete data by Z
ptq
i , i “ 1, ..., N .

Finally, we impute the latent variables based on the conditional distribution of θi given Yi and

Z
ptq
i , where the conditional distribution is calculated under the known measurement model and

the estimated structural model from the S-step. We denote the imputed latent variables by θ
ptq
i ,

i “ 1, ..., N .

Output: The estimate of the structural parameters

pβ0 “

řT
t“B`1 β

ptq
0

T ´ B
, pβ “

řT
t“B`1 β

ptq

T ´ B
, and pσ “

řT
t“B`1 σ

ptq

T ´ B
.

We provide a few remarks on the II algorithm.

Remark 1. In our implementation, weakly informative priors are used for the parameters of the Bayesian

models in the S-step of the algorithm. Specifically, for the linear regression models, we assume that the

regression coefficients are i.i.d., each following a normal distribution with mean zero and variance 100, and

the residual variance follows an inverse gamma distribution, with scale and shape parameters both being 0.1.

For the logistic and multinomial logistic regression models, we assume that the regression coefficients are

i.i.d., each following a normal distribution with mean zero and variance 100.

Under these priors, the sampling in the S-step is straightforward. More specifically, the priors for the

linear regression models are conjugate, and thus, their parameters can be drawn from the normal and inverse

gamma distributions. For the logistic and multinomial logistic regression models, we sample their parameters

using a Pólya-Gamma Gibbs sampler, following Polson et al. (2013). This sampler is a state-of-the-art sam-

pling technique for Bayesian logistic models that converges very fast. We note that the Pólya-Gamma Gibbs

sampler only involves sampling from a Pólya-Gamma distribution and sampling from a normal distribution,

both of which can be carried out efficiently. Sampling from the Pólya-Gamma distribution is implemented

using the “pgdraw” package in R.

Remark 2. The latent variables θi are sampled using an Adaptive Rejection Metropolis Sampling (ARMS)

algorithm (Gilks and Wild, 1992) in the I-step. This sampling step is implemented using the R package

“armspp”.

Remark 3. The proposed method falls under the theoretical framework of Liu et al. (2014) for iterative

imputation.

Remark 4. The II algorithm is very similar to the FCS method proposed in Grund et al. (2021) for the

simultaneous imputation of plausible values of the latent traits and the missing predictors. However, Grund

et al. (2021) used predictive mean matching to impute missing values in each iteration of their FCS method.

The predictive mean matching method is a popular hot deck imputation method with good empirical perfor-
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mance. However, this method lacks a theoretical guarantee. In particular, it is not covered by the theoretical

framework of Liu et al. (2014).

4 Variable Selection with FDR Control

4.1 FDR Control

To tackle the high dimensionality of background variables, we propose to perform variable selection and

then use the selected variables in the scaling model. When performing variable selection, we face a trade-off

between the type I error (selecting a null variable as non-null) and the type II error (selecting a non-null

variable as null). Most statistical procedures consider controlling a certain type-I error rate, such as the

family-wise type-I error rate and the False Discovery Rate (FDR). Since the FDR is an error metric that

better scales with the high-dimensionality of data, we consider variable selection with a controlled FDR. Let

S˚ denote the set of non-null predictors, i.e., the predictors for which β˚
j ‰ 0. Let pS be the selected set of

non-null variables given by a variable selection method. Then the FDR is defined as

FDR “ E
´

p pSzS˚q{| pS|

¯

,

i.e., the expected proportion of null predictors among the selected ones. We want to control the FDR to be

below an acceptable level α to ensure that most of the selected variables are relevant. In practice, we may

use α “ 0.05 or 0.1.

4.2 Data Splitting Method

We apply a recently proposed Data Splitting (DS) method (Dai et al., 2022) to control the FDR of variable

selection. We describe this method in Algorithm 2 below.

Algorithm 2 (DS Method).

Input: Total number of iterations T , burn-in size B ă T , an initial imputation of the latent variables

and the missing predictors, denoted by θ
p0q

i and Z
p0q,mis
i , respectively. Observed responses Yi and

observed predictors Zobs
i . We use Z

p0q

i to denote the complete predictor vector for student i, in which

we replace Z
p0q,mis
i . A Target FDR level α P p0, 1q.

Step 1: Randomly split the data into two equal-size datasets.

Step 2: For each dataset, use the II algorithm (Algorithm 1) and obtain an estimate of the structural

parameters. We denote the estimated regression coefficients from the two datasets by pβp1q and pβp2q,

respectively.

Step 3: For each variable j, we calculate a mirror statistic, Mj. When predictor j is a continuous or

binary variable, the corresponding regression coefficient is a scalar. Let the estimates of the parameter

from Step 2 be pβ
p1q

j and pβ
p2q

j . Then its mirror statistic can be constructed as

Mj “ signppβ
p1q

j
pβ

p2q

j qp|pβ
p1q

j | ` |pβ
p2q

j |q.
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When predictor j is a categorical variable with Kj categories, the corresponding regression coefficient is

a vector. Let the estimates of βj from Step 2 be pβ
p1q

j “ ppβ
p1q

j1 , ..., pβ
p1q

j,Kj
qJ and pβ

p2q

j “ ppβ
p2q

j1 , ..., pβ
p2q

j,Kj
qJ.

Its mirror statistic is constructed as

Mj “

Kj
ÿ

k“1

signppβ
p1q

jk
pβ

p2q

jk qp|pβ
p1q

jk | ` |pβ
p2q

jk |q.

For a non-null variable, its regression coefficients from two splits tend to be near their non-zero true

value. Thus, they tend to be large in absolute value and of the same sign, yielding a large and positive

mirror statistic. In contrast, the regression coefficients from two splits tend to be near zero, and thus,

its mirror statistic may be negative or close to zero.

Step 4: Calculate the cutoff τα as

τα “ min

"

t ą 0 :
#tj : Mj ă ´tu

#tj : Mj ą tu _ 1
ď α

*

Output: The selected variables tj : Mj ą ταu.

Under reasonable regularity conditions, this procedure can control the FDR as the number of variables

goes to infinity. See Dai et al. (2022) for the intuitions and theoretical results.

4.3 Aggregating Multiple Data Splittings

The algorithm above only involves only one data splitting, which involves some randomness. To minimise

such randomness, we further adapt the aggregation procedure of Dai et al. (2022) to aggregate the results from

multiple data splittings. With additional regularity conditions, this aggregation procedure asymptotically

controls the FDR.

Algorithm 3 (DS Aggregation).

Input: Total number of iterations T , burn-in size B ă T , an initial imputation of the latent variables

and the missing predictors, denoted by θ
p0q

i and Z
p0q,mis
i , respectively. Observed responses Yi and

observed predictors Zobs
i . We use Z

p0q

i to denote the complete predictor vector for student i, with the

missing entries replaced by Z
p0q,mis
i . A target FDR level α P p0, 1q. The number of independent data

splittings m.

Step 1: Run the DS method (Algorithm 2) m times, each time with an independent data splitting. Let
pSpkq be the selected predictors in each run, k “ 1, ...,m.

Step 2: Calculate the empirical inclusion rate pIj as

pIj “
1

m

m
ÿ

k“1

1
tjP pSpkqu

| pSpkq| _ 1
.

Step 3: Sort the features with respect to their empirical inclusion rates in increasing order. Denote

the sorted empirical inclusion rates as 0 ď pIp1q ď pIp2q ď ¨ ¨ ¨ ď pIppq.

Step 4: Find the largest l P 1, ..., p such that pIp1q ` ¨ ¨ ¨ pIplq ď α.

Output: Selected predictors pS “ tj : pIj ą pIplqu.

8



5 Simulation Study

5.1 Checking the Properties of the II Estimator

We check the properties of the II estimator, with a focus on the estimation of the regression coefficients in

the structural model. We consider a setting with N “ 2000, J “ 60 and p “ 60. Each student is assumed

only to receive 20 items randomly selected from the 60 items. The predictors are missing completely at

random, with about 40% of the data entries missing. The 60 variables include 20 continuous variables, 20

binary variables, and 20 categorical variables. For each variable type, there are only five non-null variables.

As it is difficult to specify the true parameters for the exponential family graphical model (as setting the

parameters arbitrarily leads to unreasonable distributions), we generate the background variables using a

Gaussian copula model. Therefore, the predictor model is slightly misspecified.

For the DS procedure to work, we need the estimate of the zero coefficients in β to be (asymptotically)

symmetric about zero. We check this property graphically. In Figure 1, we show the histograms of the

estimates of six zero coefficients based on 100 independent simulations. We have also checked the estimates

of the other zero coefficients, for which the results are similar. We see that the symmetric assumption roughly

holds. We further check the accuracy of the point estimation for the non-zero coefficients. In Figure 2, we

show the histograms of the estimates of six non-zero coefficients based on 100 independent simulations, where

the true values of the coefficients are indicated by vertical red lines. We have also checked the estimates of

the other non-zero coefficients. We see that the estimates are reasonably accurate but have some bias. We

believe that the bias might be due to two reasons: (1) model misspecification and (2) overfitting (as the

number of predictors is large). The biases of the zero and nonzero coefficients are given in Figure 3. We also

notice that the variances of the parameter estimates are not very small. This variance includes two parts –

(1) statistical error determined by the sample size and (2) Monte Carlo error that can be further reduced

by increasing the number of iterations T in Algorithm 1 (in this analysis, we set T “ 1000 and burn-in size

B “ 200). If the aim is to estimate a final model, then we may need to increase T . See results in Section 5.2

below for the model selection results.

5.2 Checking the Results of Variable Selection

We now check the performance of Algorithm 3 under the same setting as above. We set the number of data

splittings to be m “ 20 and the target FDR level α “ 0.1. The results below are based on 100 replications

(1 replication takes about 30 hours on one CPU core without parallel computing). The estimated FDR

based on 100 replications is 9.98%, which is very close to the nominal level of 10%. The histogram of False

Discovery Proportion (FDP) based on the 100 replications is given in Figure 4, where we see that most of

the FDPs are around the nominal level, and there are 17 cases (out of 100) for which the FDP is above

0.2. The True Positive Rate for variable selection is 98.3%, and the False Positive Rate is 4.1%. With this

relatively high TPR and low FPR, the latent regression model using the selected variables should perform

similarly to the true model in terms of scaling.

5.3 Examining PCA-based Approach

In this subsection, we give constructed examples in which the PCA approach does not perform well. We

consider three examples. The first example concerns the selection of non-null variables, and the second and

third examples concern the prediction of the latent trait.
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Figure 1: The histograms of the estimates for four zero coefficients, where β6 and β7 are the coefficients for
two continuous variables, β26 and β27 correspond to two binary variables, and β51 and β52 correspond to a
categorical variable with two categories.
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Figure 2: The histograms of the estimates for four non-zero coefficients, where β1 is the coefficient for
a continuous variable, β21 corresponds to a binary variable, and β41 and β42 correspond to a categorical
variable with two categories.
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Figure 3: Biases of the 80 latent regression coefficients calculated based on 100 replications. Among the 80
coefficients, 60 have a true value of zero, and 20 have non-zero true values. The non-zero true parameters
take values between 0.5 and 1.

11



FDP

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4

0
5

10
15

20
25

Figure 4: The histogram of false discovery proportion based on the 50 replications.

Example 1. For simplicity, we assume all the background variables are continuous, and there is no missing

data, but similar examples can be constructed for categorical variables and when there are missing values.

Consider the following setting. We generate data from a sparse latent regression model. Let N “ 20, 000,

J “ 20 and p “ 60. Assume there is no missingness in the responses and background variables. The

background variables are generated by a two-dimensional factor model

Z “ AF ` ϵ,

where F follows a two-dimensional standard normal distribution, A “ paijqpˆ2 is the loading matrix, and ϵ

is the vector of the independent errors. We generate θ by adding a Gaussian noise to β0 ` βJZ, where only

β1 through β10 are non-zero. By our construction, the top two PCs account for 80% of the total variance.

1. We compare the true latent regression model and the misspecified latent regression model in terms of

the R2 value – the proportion of total posterior variance of θ that is explained by the predictors (in

the true model, the predictors are Z1 to Z10; in the PCA model, the predictors are the PC scores).

2. We use the plausible values from the misspecified model for subsequent analysis. In particular, we

regress the plausible values on Z. We look at the p-values of the null variables. We also check the

significance of the non-null variable.

We see the following results.

1. The R2 for the true model is 56% while the R2 for the misspecified model is 12%. This result is due

to that the non-null variables (Z1 to Z10) have small loadings on the factors. Thus, the PC scores do

not contain much information about the non-null variables.

2. We note that the non-null variables are very significant that can hardly be missed. However, we also

note that there might be a problem with the inference about the null variables in the sense that their

p-values do not follow a uniform distribution. Figure 5 provides a histogram for the p-values of null

variables (based on 200 independent simulations). We see that the distribution is not uniform, and it
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Figure 5: A histogram for the p-values of null variables (based on 200 independent simulations).

skews towards 0. It means that the type I error cannot be controlled with these p-values. This is due

to the use of a misspecified model - the effects of the null variables are introduced into the plausible

values through the PCs. This issue seems only to become serious when the sample size is large (we

have also tried some small sample size settings, where this issue is less severe).

Example 2. In this example, we compare the proposed method and PCA approach based on missing

indicators. We consider the same simulation setting as in Section 5.1. For each method, we calculate the

correlation between the plausible value of the latent trait and the true latent trait value. For the PCA

approach, we use the top PCs that account for 80% of the total variance.

We run 100 independent simulations. The average correlation for the proposed method is 87.3%. And the

average correlation for the PCA approach is 85.7%. The proposed method predicts the latent trait slightly

better.

Example 3. This example considers the same setting as in Example 2, except for the missing data pattern.

In this example, instead of assuming that the data entries are uniformly missing, we assumed that for the first

600 observations (recall that the sample size is 2000), their data on 30 variables are completely missing. This

mimics situations, for example, when many parents fail to return the home survey questionnaire. We run

100 independent simulations. The average correlation for the proposed method is 89.0%. And the average

correlation for the PCA approach is 67.4%. The proposed method predicts the latent trait much better.
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6 Application to PIRLS 2016 Data

6.1 PIRLS 2016 Data

The PIRLS is an international assessment of students’ reading achievement for fourth-grade students con-

ducted by the TIMSS & PIRLS International Study Center at Boston College for the International Associ-

ation for the Evaluation of Educational Achievement (IEA). The assessment is implemented in a five-year

cycle, and its data are used widely to inform educational policymaking in the participating countries of the

PIRLS.

In this study, we used the PIRLS 2016 dataset for fourth-graded students in the USA to illustrate the use

of the proposed method. This dataset contains the responses from three versions of the PIRLS assessment:

PIRLS, PIRLS Literacy, and ePIRLS (Mullis and Martin, 2015, Chapter 3). The PIRLS comprehensively

evaluates the reading literacy of fourth-grade students. The PIRLS Literacy shares a similar scope to the

PIRLS; however, its content is aimed at measuring the reading literacy of the students at the lower end of

the achievement scale in the PIRLS. The ePIRLS is an extension of the PIRLS to assess reading skills in

online settings. Here, we focused on the dataset from the regular PIRLS.

6.2 Data Description and Handling

The dataset from the PIRLS is divided into two main parts: achievement and background datasets. In the

following sections, we summarise the data description and procedure of data handling for each dataset.

6.2.1 Achievement data

For the achievement data, the PIRLS adopted a booklet design to implement its assessment of reading

literacy because conducting all the sets of the PIRLS assessment items is infeasible in a limited testing time

for fourth-grade students. A booklet is a set of test items carefully chosen from the PIRLS assessment items,

and 16 booklets were constructed. Every student was assigned to one of these booklets. Thus, each student

was exposed only to one booklet so that the responses to the items in the other booklets that were not

administered to the student were all missing by this test-implementation design. We treated such responses

as “not implemented” and did not include further analysis for missing-value imputations. However, students

also have missing responses in an assigned booklet where some responses are missing because they could not

reach the corresponding items during testing time. We treated such missing responses as incorrect ones by

following the same procedure of data handling in the PIRLS 2016 for generating proficiency scores (Martin

et al., 2017, Chapter 12, p. 7).

In addition, we need to specify a measurement model to generate a latent variable θi in the Imputation

step of the II algorithm. For a dichotomously scored item without a multiple-choice question, we use a 2PL

model. For a dichotomously scored item with a multiple-choice question, we use a 3PL model to account for

the probability of a correct response by a random guess. For a polytomous item with ordered scoring (e.g.,

incorrect, partially correct and correct), we use a GPCM. Since all the item-specific parameters of these

three measurement models were calibrated and provided beforehand in the dataset from the PIRLS, we

treated these parameters as known. It should be noted that we included only the items whose item-specific

parameters are provided.

Lastly, we present the number of students and test items in each booklet. The total number of students

is 4425. The number of students and items in each booklet ranges from 237 to 714 and 25 to 34, respectively.
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For details on the specifications of the booklets, refer to Mullis and Martin (2015, Chapter 3).

Table 1: The number of students and items in each booklet

Booklet ID Number of students Number of items

1 249 28

2 241 29

3 249 31

4 237 29

5 257 34

6 251 25

7 246 25

8 247 27

9 240 26

10 251 28

11 242 26

12 252 30

13 251 25

14 243 30

15 255 30

16 714 32

6.2.2 Background data

The background data consist of four types of PIRLS 2016 context questionnaires: home, teacher, school, and

student. Since more than 90% of the responses in the questionnaire about home are missing, we excluded the

variables relevant to this questionnaire and used the responses from the other three types of questionnaires

for data analysis. However, as we illustrated in Example 3 of Section 5.3, the proposed method may still

perform well when including the highly missing home survey data.

We now provide brief descriptions of the other three types of questionnaires quoted from Mullis and

Martin (2015, Chapter 3, p. 67–68).

• Home: The home questionnaire, which is named the Learning to Read Survey, was given to parents or

primary caregivers of students participating in the PIRLS assessment. It asks about the home context,

including the languages spoken at home, the parents’ attitudes toward reading, and their education and

occupation. The questionnaire also asks about the students’ educational activities outside of school,

such as early childhood education and early literacy and numeracy activities, as well as the child’s

reading readiness at the beginning of primary school. As mentioned previously, this questionnaire is

excluded in the analysis.

• Teacher : The teacher questionnaire asks about the classroom context for reading instruction, includ-

ing class characteristics, reading instructional time, and approaches to instruction. It also gathers

information about the teacher’s characteristics, such as their career satisfaction, education, and recent

professional development activities.
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• School : The school questionnaire was given to the principal of each school. It asks about the school’s

characteristics, including student demographics, the school environment, and the availability of re-

sources and technology. It also includes items that focus on the principal’s leadership role, education,

and experience.

• Student : The student questionnaire collects information on their home environment, such as the lan-

guages spoken at home, the availability of books, and other resources for learning. It also gathers

information on their experiences in school, including their sense of belonging and whether they have

experienced bullying. Additionally, the questionnaire gathers data on their out-of-school reading habits

and attitudes toward reading, including their level of interest in reading, their confidence in reading,

and their engagement in reading lessons.

The procedure of data handling for background variables is as follows. For continuous variables, we

treated the variables with more than ten unique values as continuous ones, and they were all standardised.

For a categorical variable, if a certain category does not have any observations, we remove that category.

In addition, all the ordinal and nominal variables were treated as nominal ones, and they were transformed

into dummy variables. It should be noted that the PIRLS 2016 dataset provides context questionnaire scales

that summarise a set of items in one latent dimension. For instance, the dataset contains the “Sense of

School Belonging” scale that was constructed from the questions such as “I like being in school” and “I feel

safe when I am at school” (Mullis and Martin, 2015, Chapter 14, Appendix A). We included such scales in

the analysis and removed the variables that were used to construct these scales. In the end, the number

of background variables was reduced from 364 to 157 in the analysis. The number of dummy-transformed

background variables becomes 345. Lastly, we computed the missing rates of background variables. These

missing rates range from 0.043 to 0.541; see Figure 6 for a visualisation.

6.3 Details of Estimation

We first performed the variable selection with FDR control to identify important background variables. Sub-

sequently, we fitted a latent regression model with the II algorithm given the selected background variables

to obtain a final model.

6.3.1 Variable Selection with FDR Control

We set a target FDR level to α “ 0.1 and the number of independent data splittings to m “ 20. The number

of iterations and burn-in iterations was set to T “ 200, and B “ 50, by which the convergence of structural

parameters was confirmed through a visual check of trace plots and the convergence diagnostics called the

rank-normalised split- pR (Vehtari et al., 2021). In particular, all the structural parameters satisfied pR ă 1.25.

An initial estimation procedure is performed to obtain the initial values for the II algorithm. For the

missing values of background variables, we imputed these entries by the generated samples from the empirical

distribution of a corresponding variable. For latent variables, we estimated these values by a grid search

on the likelihood value given the three measurement models and their item-specific parameters. A grid

of latent variables was set to 0.005. With the complete dataset, we obtained the initial values of relevant

parameters in the Sampling and Imputations steps of the II algorithm by using linear regression and logistic

and multinomial logistic regression with a ridge penalty, where the ridge penalty was specified to λ “ 1500{N .

Here, N denotes the sample size.

16



0.
00

0.
25

0.
50

0.
75

1.
00

ACBG03A

ACBG03B

ACBG04

ACBG05A

ACBG05B

ACBG06A

ACBG06B

ACBG07A

ACBG07B

ACBG07C

ACBG08A

ACBG08B

ACBG09

ACBG09A

ACBG09B

ACBG09C

ACBG10

ACBG11

ACBG12AI

ACBG15A

ACBG15B

ACBG15C

ACBG17A

ACBG17B

ACBG17C

ACBG17D

ACBG17E

ACBG17F

ACBG17G

ACBG17H

ACBG17I

ACBG17J

ACBG17K

ACBG17L

ACBG17M

ACBG17N

ACBG18

ACBG19

ACBG20

ACBG21A

ACBG21B

ACBG21C

ACBGRRS

ACDG03

ACDG09

ACDGDAYS

ACDGTIHY

ATBG01

ATBG02

ATBG04

ATBG05AA

ATBG05AB

ATBG05AC

ATBG05AD

ATBGEAS

ATBR01A

ATBR01B

ATBR02

ATBR03A

ATBR03B

ATBR04

ATBR06

ATBR07

ATBR12A

ATBR14A

ATBR14BA

ATBR14BB

ATBR14BC

ATBR15A

ATBR15E

ATBR21A

ATBR21B

ATBR21C

ATBR21D

ATBR21E

ATBR22A

ATDGLIHY

ATDGRIHY

Q
ue

st
io

n 
ID

Missing Rate
B

ac
kg

ro
un

d 
V

ar
ia

bl
es

0.
00

0.
25

0.
50

0.
75

1.
00

ACDG11R

ATBG03

ATBG05BA

ATBG05BB

ATBG05BC

ATBG05BD

ATBG05BE

ATBG05BF

ATBG05BG

ATBG05BH

ATBG05BI

ATBG05BJ

ATBG06

ATBG09A

ATBG09B

ATBG09C

ATBG09D

ATBG09E

ATBR05H

ATBR08A

ATBR08B

ATBR08C

ATBR08D

ATBR08E

ATBR09AA

ATBR09AB

ATBR09AC

ATBR09BA

ATBR09BB

ATBR09BC

ATBR10A

ATBR10B

ATBR10C

ATBR10D

ATBR10E

ATBR10F

ATBR10G

ATBR11A

ATBR11B

ATBR11C

ATBR11D

ATBR11E

ATBR11F

ATBR11G

ATBR11H

ATBR11I

ATBR12B

ATBR12C

ATBR12D

ATBR12E

ATBR12F

ATBR12G

ATBR12H

ATBR12I

ATBR13A

ATBR13B

ATBR13C

ATBR13D

ATBR14CA

ATBR14CB

ATBR14CC

ATBR14CD

ATBR14CE

ATBR14CF

ATBR15B

ATBR15C

ATBR15D

ATBR16

ATBR17

ATBR18

ATBR19A

ATBR19B

ATBR19C

ATBR20A

ATBR20B

ATBR20C

ATBR22B

ATBR22C

ATDG01

Q
ue

st
io

n 
ID

Missing Rate

B
ac

kg
ro

un
d 

V
ar

ia
bl

es

F
ig
u
re

6
:
M
is
si
n
g
ra
te
s
o
f
b
a
ck
g
ro
u
n
d
va
ri
a
b
le
s.

17



6.3.2 Latent Regression Model with Selected Background Variables

For the latent regression model with selected background variables, we also set the number of iterations and

burn-in iterations to T “ 200 and B “ 50. We also confirmed the convergence of structural parameters

through a visual check of trace plots and the convergence diagnostics called the rank-normalised split- pR

(Vehtari et al., 2021), where all the structural parameters satisfied pR ă 1.1. The same initial values of the

II algorithm as in the variable selection with FDR control were used for parameter estimation.

6.4 Result

With the proposed method, twelve variables were selected, and these variables consisted of questions relevant

to teachers and schools, while no variable from the student survey was selected. The selected background

variables with their inclusion rates, question ID, and contents are given in Table 2. A latent regression model

is fitted with the twelve selected variables. Table 3 presents the estimates of the expected a posteriori (EAP)

and posterior standard deviation (SD) for the partial regression coefficients in this model.

We note that the selected variables are ordered by their inclusion rates defined in Step 2 of Algorithm 3,

as the inclusion rate can be viewed as a measure of variable importance. For example, we see that the top

six variables are ATBR12E (teacher asking students to compare what they have read with other things they

have read), ACBG03B (the percentages of students in school who come from economically affluent homes),

ACBG17N (the grade at which school put emphasis on determining the author’s perspective or intention),

ACBG07C (the number of days that school is open for instruction), ATBR18 (teachers’ expectation on how

much time students spend on homework involving reading), and ACBG11 (the number of computers at the

school).

The estimates of most parameters in Table 3 are intuitive. For example, for ATBR12E, the negative

signs of the parameter estimates, except for the last category “Never or almost never”, indicate that a higher

frequency of applying this teaching strategy is associated with better reading performance (with the rest of

the variables controlled). The exception with the last category “Never or almost never” is likely due to a

high uncertainty with this parameter estimate, as the sample size for the last category is relatively small (the

sample size for this category is 46). The result for variable ACBG03B suggests that the higher proportion

of students from economically affluent homes is associated with better reading performance (with the rest of

the variables controlled). The result for ACBG17N further suggests that the earlier the school puts emphasis

on determining the author’s perspective or intention, the better the reading performance (with the rest of

the variables controlled). The estimated coefficients for ACBG07C suggest that the number of days the

school is open for instruction matters – the more days the school is open, the better the reading performance

(with the rest of the variables controlled). Moreover, teachers’ expectations on the amount of time students

spending on homework involving reading is positively associated with students’ reading performance (with

the rest of the variables controlled) – the longer the expected time, the better the performance. Furthermore,

the number of computers at school (for students in grade 4) is positively associated with students’ reading

performance (with the rest of the variables controlled). These findings may help identify the key factors

associated with students’ reading performance.

The results also reveal some limitations of the current analysis. Possible solutions to these problems are

discussed in Section 7. We notice that the method only selected teacher- and school-level variables, while

no student-level variables were selected. This result is a little surprising. It is likely due to that we did

not introduce school or class-specific random effects into the model, and thus, the teacher- and school-level
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variables are selected to compensate for such random effects. Or it could be due to that the individual-level

data are reported with larger measurement errors. Consequently, the estimated regression coefficients suffer

from attenuation (Chapter 3, Carroll et al., 2006), making them less likely to be selected.

In addition, for certain ordinal predictors, we expect the coefficients of the corresponding dummy variables

to have a monotone ordering so that the effect increases or decreases with the ordered categories. However,

such monotonicity relationships were not imposed. For example, we may expect the coefficients for the

ordinal variable ATBR12E to be negative and monotone decreasing. However, it is not the case when

moving from category C3 (-0.159) to C4 (0.216), which is likely due to the relatively smaller sample size

for the last category. It may be a good idea to impose some monotonicity constraints in the estimation to

achieve better interpretability.

Finally, the result of the current model may also suffer from the issue of collinearity. In particular, both

variables ATBG01 (the number of teaching years) and ATBG03 (teacher age) are included in the current

model. These two variables have a polyserial correlation of 0.72. Although the signs of the estimated

coefficients are consistent with our expectation, the estimated parameter values may be inaccurate due to

the high collinearity.

Table 2: Contents of the selected background variables and their inclusion rates

Order QuestionID Inclusion Rate Type Content

1 ATBR12E 0.224 Teacher
How often do you ask the students to do the following things to help develop reading comprehension skills or strategies?

Compare what they have read with other things they have read

2 ACBG03B 0.066 School
Approximately what percentage of students in your school have the following backgrounds?

Come from economically affluent homes

3 ACBG17N 0.050 School
At which grade do the following reading skills and strategies first receive a major emphasis in instruction in your school?

Determining the author’s perspective or intention

4 ACBG07C 0.042 School
For the (fourth grade) students in your school:

In one calendar week, how many days is the school open for instruction?

5 ATBR18 0.032 Teacher In general, how much time do you expect students to spend on homework involving reading (for any subject) each time you assign it?

6 ACBG11 0.025 School How many computers (including tablets) does your school have for use by (fourth grade) students?

7 ATBG01 0.025 Teacher By the end of this school year, how many years will you have been teaching altogether?

8 ACBG05B 0.025 School Which best describes the immediate area in which your school is located?

9 ATBG03 0.025 Teacher How old are you?

10 ACBG09A 0.017 School Approximately how many books (print) with different titles does your school library have (exclude magazines and periodicals)?

11 ATBG09B 0.017 Teacher
How often do you have the following types of interactions with other teachers?

Observe another classroom to learn more about teaching

12 ATBR08C 0.016 Teacher
When you have reading instruction and/or do reading activities, how often do you organize students in the following ways?

I create mixed-ability groups

7 Discussion

In this report, we proposed a variable selection approach to latent regression modelling. The new method

tackles the challenges of high dimensionality and data missingness in background variables. In the meantime,

it avoids the issues with the state-of-the-art PCA-based approach, including the issues with the missing

indicator approach and the PCA. Our method and its implementation are designed under the most flexible

setting that allows for different types of measurement items (2PL, 3PL, and GPCM) and different types of

background variables (binary, continuous, categorical). Our simulation results confirm that the proposed

19



T
ab

le
3:

T
h
e
es
ti
m
at
es

of
th
e
E
A
P

a
n
d
p
o
st
er
io
r
S
D

fo
r
th
e
p
a
rt
ia
l
re
g
re
ss
io
n
co
effi

ci
en
ts

in
th
e
la
te
n
t
re
g
re
ss
io
n
m
o
d
el

O
rd
er

Q
u
es
ti
on

ID
C
1

C
2

C
3

C
4

C
5

C
6

1
A
T
B
R
12

E
1:

E
v
er
y
d
ay

or
al
m
os
t
ev
er
y
d
ay

2
:
O
n
ce

o
r
tw

ic
e
a
w
ee
k

3
:
O
n
ce

or
tw

ic
e
a
m
o
n
th

4
:
N
ev
er

o
r
a
lm

o
st

n
ev
er

-
-

-
-0
.0
4
4
(0
.0
3
5)

-0
.1
5
9(
0
.0
6
7
)

0
.2
1
6
(0
.1
5
6
)

-
-

2
A
C
B
G
03

B
1:

0
to

10
%

2
:
11

to
2
5
%

3:
2
6
to

50
%

4:
M
o
re

th
an

5
0
%

-
-

-
0.
2
0
3
(0
.0
4
4
)

0
.3
8
2
(0
.0
51

)
0
.3
9
9
(0
.0
5
9)

-
-

3
A
C
B
G
17

N
1:

F
ir
st

gr
ad

e
or

ea
rl
ie
r

2:
S
ec
o
n
d
g
ra
d
e

3:
T
h
ir
d
g
ra
d
e

4
:
F
o
u
rt
h
g
ra
d
e

5:
N
o
t
in

th
es
e
g
ra
d
es

-

-
-0
.0
5
2
(0
.0
4
8)

-0
.0
3
8(
0
.0
4
6
)

-0
.2
27

(0
.0
6
8
)

-0
.0
0
4(
0
.2
)

-

4
A
C
B
G
07

C
1:

6
d
ay
s

3
:
5
d
ay
s

4
:
4
1
/2

d
ay
s

5:
4
d
ay
s

-
-

-
-0
.2
2
4
(0
.1
7
6)

-0
.4
7
9(
0
.2
6
)

-0
.2
5
5
(0
.2
16

)
-

-

5
A
T
B
R
18

1:
15

m
in
u
te
s
or

le
ss

2
:
1
6
–
30

m
in
u
te
s

3
:
31

–
6
0
m
in
u
te
s

-
-

-

-
0.
2
3
4
(0
.0
6
2
)

0
.2
4
4
(0
.0
75

)
-

-
-

6
A
C
B
G
11

T
h
e
n
u
m
b
er

of
co
m
p
u
te
rs

-
-

-
-

-

0.
00

3(
0.
01

7)
-

-
-

-
-

7
A
T
B
G
01

h
ow

m
an

y
ye
ar
s
w
il
l
yo
u
h
av
e
b
ee
n
te
ac
h
in
g
al
to
ge
th
er
?

-
-

-
-

-

0.
00

8(
0.
02

7)
-

-
-

-
-

8
A
C
B
G
05

B
1:

U
rb
an

–D
en

se
ly

p
op

u
la
te
d

2
:
S
u
b
u
rb
a
n
–O

n
fr
in
g
e
or

ou
ts
k
ir
ts

of
u
rb
an

a
re
a

3
:
M
ed

iu
m

si
ze

ci
ty

o
r
la
rg
e
to
w
n

4
:
S
m
a
ll
to
w
n
or

v
il
la
g
e

5:
R
em

o
te

ru
ra
l

-

-
0.
3
7
4
(0
.0
5
7
)

0
.2
5
6
(0
.0
53

)
0
.4
9
7
(0
.0
6
)

0
.1
0
2(
0
.0
9
5
)

-

9
A
T
B
G
03

1:
U
n
d
er

25
2
:
2
5
–2

9
3
:
3
0
–
3
9

4
:
4
0
–
4
9

5:
5
0
–
5
9

6
:
6
0
o
r
m
o
re

-
0.
3
3
5
(0
.0
9
1
)

0
.2
8
9
(0
.0
85

)
0
.3
7
6
(0
.0
8
9)

0
.2
7
2(
0
.1
0
1
)

0
.5
5
4(
0
.1
2
2
)

10
A
C
B
G
09

A
2:

25
1–

50
0

3
:
50

1
–
2
,0
0
0

4
:
2
,0
0
1
–
5
,0
0
0

5
:
5
,0
0
1
–
1
0
,0
0
0

6
:
M
o
re

th
a
n
1
0
,0
0
0

-

-
0.
1
5
6
(0
.1
2
5
)

-0
.1
8
6
(0
.1
0
9
)

0
.0
9
8
(0
.1
0
6
)

0
.0
44

(0
.1
0
8
)

-

11
A
T
B
G
09

B
1:

V
er
y
of
te
n

2
:
O
ft
en

3
:
S
o
m
et
im

es
4
:
N
ev
er

o
r
a
lm

o
st

n
ev
er

-
-

-
-0
.2
1
(0
.0
8
7
)

-0
.0
7
6
(0
.0
7
9
)

-0
.1
6
5
(0
.0
83

)
-

-

12
A
T
B
R
08

C
1:

A
lw
ay
s
or

al
m
os
t
al
w
ay
s

2
:
O
ft
en

3
:
S
o
m
et
im

es
4
:
N
ev
er

-
-

-
0.
0
3
9
(0
.0
6
1
)

0
.0
4
3
(0
.0
65

)
0
.0
7
1
(0
.1
0
7)

-
-

N
o
te
.
T
h
e
es
ti
m
a
te
s
o
f
h
e
E
A
P

a
n
d
p
o
st
er
io
r
S
D

fo
r
th

e
p
a
rt
ia
l
re
g
re
ss
io
n
co

effi
ci
en

ts
a
re

p
re
se
n
te
d
in

th
e
m
a
n
n
er

a
s
“
E
A
P

(p
o
st
er
io
r
S
D
).
”
A
d
d
it
io
n
a
ll
y,

“
O
rd

er
”
d
en

o
te
s

th
e
ra
n
k
o
f
se
le
ct
ed

b
a
ck

g
ro
u
n
d
v
a
ri
a
b
le
s
so
rt
ed

b
y
th

e
m
a
g
n
it
u
d
e
o
f
th

ei
r
in
cl
u
si
o
n
ra
te
s
in

T
a
b
le

2
.
S
in
ce

th
e
p
a
rt
ia
l
re
g
re
ss
io
n
co

effi
ci
en

t
a
ss
o
ci
a
te
d
w
it
h
th

e
b
a
se

ca
te
g
o
ry

o
f
d
u
m
m
y
-t
ra
n
sf
o
rm

ed
ca

te
g
o
ri
ca

l
v
a
ri
a
b
le
s
is

n
o
t
es
ti
m
a
te
d
,
th

e
ce
ll
s
fo
r
ca

te
g
o
ri
ca

l
v
a
ri
a
b
le
s
in

th
e
“
C
1
”
co

lu
m
n
a
re

b
la
n
k
.

20



method can control the FDR under a reasonable target level (set to be 0.1 in this report) while maintaining

high power. We also applied the proposed method to PIRLS 2016 data. The results from this application

look promising, though we also identified some limitations of the new approach to be discussed below.

We did not fully investigate the choice of FDR target level α in this report, though some simulations

have been conducted with α “ 0.05 and 0.2 (results not included in this report). The simulation results

under different α levels show that the FDR can be reasonably controlled by the proposed method under

these target levels. However, note that FDR control is in an average sense (aggregated over many datasets)

since FDR is defined as an expectation. When looking at a specific dataset, we often do not observe a

monotone relationship between the α level and the size of the selected set. That is, as α increases, which

means a less strict constraint on the FDR, the number of selected variables may sometimes decrease, which

is opposite to our expectation (even though the procedure is still asymptotically valid in an average sense).

The decrease in the selection variable set (as α increases) happened in the analysis of PIRLS 2016 data.

We believe this is due to the current DS aggregation algorithm, and the issue can be fixed if we modify

this aggregation procedure based on a method recently proposed in Ren and Barber (2022). We leave it for

future investigation.

The analysis of PIRLS 2016 suggests several directions that are worth future investigation. First, we

notice that all the selected variables are at the teacher and school levels, whereas no student-level variables

are selected. We believe that it does not mean these individual-specific factors are not important to students’

reading achievement. Instead, it is likely due to that we did not include school- or class-specific random effects

in the latent regression model, and the teacher- and school-level variables are selected to compensate for such

random effects, or it could be the individual-level data being reported with larger measurement errors and,

thus, suffering from regression attenuation. If the former reason, then we should add these random effects

into our model. If the latter, one possible solution is to consider separate FDR measures for the student-level

variables and teacher- and school-level variables and select separately from the two sets of variables. Second,

we notice that the proposed method may select variables with collinearity. To tackle this issue, we may

pre-process the data by removing or merging some variables. Third, for certain ordinal covariates, we may

expect the coefficients of the corresponding dummy variables to have a monotone ordering so that the effect

increases or decreases with the ordered categories. The estimated model may lack interpretability if the

estimated coefficients do not have a monotone relationship. Such monotone constraints are currently not

imposed in our variable selection and estimation procedures, making some coefficients in the final model

hard to interpret. In the future, we may incorporate such monotone constraints into the estimation and

variable selection procedures through tailored prior specifications. Finally, the current estimation procedure

– Algorithm 1 – may be further improved by imposing sparsity-inducing priors, such as spike-and-slab priors

(Ishwaran and Rao, 2005), on the regression coefficients and parameters of the exponential family graphical

model. These priors will be helpful when the sample size is relatively small compared with the number of

variables, which may be the case for certain countries in an international large-scale assessment.

We point out that we currently consider a latent regression model with a unidimensional latent trait.

This model and the computational algorithms can be easily extended to a multidimensional latent regression

model that can be applied to tests with multiple subjects, such as TIMSS. We leave this extension for future

investigation.

Admittedly, the proposed method is computationally more demanding than the PCA-based method due

to the iterative sampling steps in the proposed method. However, we believe that the computation of the

current method is affordable for operational use, thanks to the use of conjugate priors and efficient samplers
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like the Pólya-Gamma sampler. The method is currently implemented in the statistical software R, which is

convenient but not very suitable for large-scale computation. We believe that the computational time can

be substantially reduced if we optimise the implementation in other programming languages that are more

suitable for large-scale computation. Furthermore, most steps of the proposed method can be substantially

speeded up by parallel computing. We will explore this option to speed up the computation.
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